Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Sci Food ; 7(1): 45, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658048

RESUMO

Aflatoxin is a group of strongly toxic and carcinogenic mycotoxins produced by Aspergillus flavus and other Aspergillus species, which caused food contamination and food loss problems widely across the world especially in developing countries, thus threatening human health and sustainable development. So, it is important to develop new, green, and broad-spectrum biocontrol technology for the prevention of aflatoxin contamination sources. Previously, we found that the PO8 protein from aflatoxigenic A. flavus could be used as a biomarker to predict aflatoxin production in peanuts (so the PO8 is named as an early warning molecule), which infers that the PO8 is relative to aflatoxin production. Therefore, in the study, based on inhibiting the PO8, a new and quick strategy for screening aflatoxin biocontrol strains for developing control agents was presented. With the PO8 inhibition method, four biocontrol strains (2 strains were isolated from peanut kernels with sterilized surface and another 2 strains from peanut rhizosphere soil) were selected and combined to increase prevention wide-spectrum. As a result, the combination showed over 90% inhibition to all tested aflatoxigenic A. flavus isolated from three different peanut production areas (north, middle, and south areas of China), and better than any single strain. The field experiments located in five provinces of China showed that the practice prevention effects (inhibition of aflatoxigenic fungi on the surface of the peanuts) were from 50% to over 80%. The results indicated that the strategy of inhibiting the early warning molecule PO8 can be used to develop aflatoxin control agents well.

2.
Front Microbiol ; 13: 1003039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312918

RESUMO

Aflatoxins, which are produced mainly by Aspergillus flavus and A. parasiticus, are recognized as the most toxic mycotoxins, which are strongly carcinogenic and pose a serious threat to human and animal health. Therefore, strategies to degrade or eliminate aflatoxins in agro-products are urgently needed. We investigated 65 Trichoderma isolates belonging to 23 species for their aflatoxin B1 (AFB1)-degrading capabilities. Trichoderma reesei CGMCC3.5218 had the best performance, and degraded 100% of 50 ng/kg AFB1 within 3 days and 87.6% of 10 µg/kg AFB1 within 5 days in a liquid-medium system. CGMCC3.5218 degraded more than 85.0% of total aflatoxins (aflatoxin B1, B2, G1, and G2) at 108.2-2323.5 ng/kg in artificially and naturally contaminated peanut, maize, and feed within 7 days. Box-Behnken design and response surface methodology showed that the optimal degradation conditions for CGMCC3.5218 were pH 6.7 and 31.3°C for 5.1 days in liquid medium. Possible functional detoxification components were analyzed, indicating that the culture supernatant of CGMCC3.5218 could efficiently degrade AFB1 (500 ng/kg) with a ratio of 91.8%, compared with 19.5 and 8.9% by intracellular components and mycelial adsorption, respectively. The aflatoxin-degrading activity of the fermentation supernatant was sensitive to proteinase K and proteinase K plus sodium dodecyl sulfonate, but was stable at high temperatures, suggesting that thermostable enzymes or proteins in the fermentation supernatant played a major role in AFB1 degradation. Furthermore, toxicological experiments by a micronucleus assay in mouse bone marrow erythrocytes and by intraperitoneal injection and skin irritation tests in mice proved that the degradation products by CGMCC3.5218 were nontoxic. To the best of our knowledge, this is the first comprehensive study on Trichoderma aflatoxin detoxification, and the candidate strain T. reesei CGMCC3.5218 has high efficient and environment-friendly characteristics, and qualifies as a potential biological detoxifier for application in aflatoxin removal from contaminated feeds.

3.
Biosens Bioelectron ; 213: 114435, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679645

RESUMO

Visual lateral flow immunoassays (LFA) have been recognized as the attractive point-of-care testing (POCT) for bioanalysis; however, they have been constrained by insufficient sensitivity and limited reliability. Herein, combining the catalytic sites of Cu nanoparticles with an inherent photothermal polydopamine (PDA) scaffold via a one-step process, a compact Cu-anchored PDA (PCu) was engineered as the efficient signal element for the multimodal LFA (mLFA). The robust PCu with peroxidase-mimics and photothermal properties, could simultaneously provide triple signal readouts for colorimetric, amplified colorimetric and photothermal detection toward Aspergillus flavus (A. flavus). Attractively, the multiple guaranteed detection of PCu-based mLFA enabled the accurate and sensitive detection of A. flavus mycelium biomass, down to 0.45 and 0.22 ng mL-1, which was 19- and 40-fold improvements compared to traditional colorimetry. Besides, mLFA was successfully applied to actual samples with satisfactory recoveries from 89.9 to 109%, indicating the highly reliable analytical performance. This work paved a prospective way for the construction of efficient peroxidase-mimics and superior photothermal multifunctional nanomaterials, providing a potential versatile visual POCT platform for analytical events.


Assuntos
Técnicas Biossensoriais , Colorimetria , Aspergillus flavus , Imunoensaio , Peroxidase , Peroxidases , Reprodutibilidade dos Testes
4.
J Agric Food Chem ; 69(16): 4840-4848, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856211

RESUMO

Biocontrol to combat the menace of Aspergillus flavus has gained considerable attention. However, the molecular mechanisms of A. flavus 's response to antagonism biotic stress are poorly deciphered. Here, we discovered that A. flavus switches an adaptive metabolic reprogramming to ensure its adversity survival by multiomics analyses (including four omics platform). Antifungal "weapons" lipopeptides and antibacterial metabolites of imizoquin were identified. The central metabolism fluxes were significantly depleted but the expressions of most corresponding genes were considerably increased in A. flavus. Secondary metabolism that does not contribute to stress was markedly suppressed. In contrast, A. flavus antibacterial "weapon arsenal" was activated to occupy an ecological niche. Our results revealed that interlinked mitochondrial central metabolism and secondary metabolism are central to A. flavus antagonism biotic stress response. This discovery contributes to the targeted design of biocontrol agents and smart regularization of rhizosphere microbiome homeostasis to realize long-term fungi pathogen control and mitigation mycotoxin contamination.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/metabolismo , Fungos/metabolismo , Metabolismo Secundário
5.
IEEE Trans Vis Comput Graph ; 27(2): 337-346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33315567

RESUMO

In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.

6.
Sci Total Environ ; 712: 136410, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050375

RESUMO

In order to solve the problem that the sensor cannot be reused due to the passivation of the electrode surface, a refreshable electrochemical aptasensor based on a hydrophobic electrode and a magnetic nanocomposite had been developed. Therein, the hydrophobic electrode was formed by modifying a screen-printed carbon electrode (SPCE) with polydimethylsiloxane (PDMS), which could avoid adsorption of molecules on the electrode surface due to its hydrophobicity. Combined with aptamer (Apt), the synthesized graphene oxide-ferroferric oxide (GO-Fe3O4) was used as a magnetic catcher to capture specific organophosphorus pesticides (OPs), which could be removed to the working area of SPCE with a magnet for electrochemical detection. The performance analysis of hydrophobic electrode showed that the SPCE could be used twice. When the electrochemical signals of Apt/GO-Fe3O4 and OPs/Apt/GO-Fe3O4 were recorded using the same SPCE, the current differences between them were directly related to the concentrations of OPs. Through the contrast test between the spiked vegetable samples and the OPs standard solutions, it was found that the OPs concentrations could be qualitatively evaluated by comparing the current differences. At the same time, the characteristic of collecting target with magnetic catcher was helpful for detecting OPs with a low concentration. Therefore, the refreshable aptasensor provided a huge potential to small molecule target evaluation.

7.
Mikrochim Acta ; 187(1): 36, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820139

RESUMO

An aptasensor is described for electrochemical determination of organophosphorus pesticides (OPPs), specifically of profenofos, phorate, isocarbophos, and omethoate. The method uses a hairpin aptamer as signalling donor. Its 5' and 3' ends were modified with amino groups and the redox probe ferrocene (Fc), respectively. A nanocomposite consisting of graphene oxide and chitosan (GO-chit) was used to immobilize the aptamer via formation of an amide link. Its good conductivity facilitates monitoring of the electrochemical responses. Upon addition of an OPP, it will be bound by the aptamer. This results in an opening of the hairpin structure. Thus, Fc is shifted away from the surface of the electrode. As a result, the impedance increases and the redox signal of Fc decreases. The electrochemical performance, binding capacity and response of the aptasensor for profenofos, phorate, isocarbophos and omethoate were studied. The limits of detection are as low as 0.01, 0.1, 0.01 and 0.1 nM, respectively. Graphical abstract Schematic representation of an electrochemical aptasensor prepared by immobilizing ferrocene (Fc) labeled hairpin aptamer (HP) on the surface of graphene oxide-chitosan (GO-chit) modified electrode, and its application to the determination of organophosphorus pesticides (OPPs) by voltammetry.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos Organofosforados/análise , Praguicidas/análise , Quitosana/química , Grafite/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Sci Rep ; 7(1): 14729, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116241

RESUMO

A sensitive and efficient ratiometric electrochemical aptasensor was designed for tetracycline (TET) detection in milk. The ratiometric electrochemical aptasensor was constructed by integrating two aptasensors termed as aptasensor 1 and aptasensor 2. The aptasensor 1 was fabricated that based on ferrocene (Fc) and gold nanoparticles (AuNPs) nanocomposite. Meanwhile, the aptasensor 2 was prepared that based on carbon nanofibers (CNFs) and AuNPs nanocomposite. TET-aptamer was immobilized effectively onto screen-printed carbon electrodes (SPCEs) surface through forming Au-S bond between AuNPs and thiol of aptamer at 5' end to construct the aptasensor 1 and aptasensor 2. And their detection results were calculated by ratio. Thus, the proposed ratiometric aptasensor solved the problem of low accuracy and large differences between batches. Under the optimized conditions, the TET was detected by differential pulse voltammetry (DPV). Taken advantage of ratio calculation, the as-prepared ratiometric aptasensor could detect TET quantitatively in the range of 10-8-10-3gL-1, with a detection limit of 3.3 × 10-7gL-1. Moreover, its applicability to TET-contaminated real samples (milk) showed an excellent agreement with the values determined by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS). With high sensitivity, accuracy and reliability, the developed ratiometric aptasensor held a great potential in TET detection for food safety.


Assuntos
Antibacterianos/análise , Técnicas Biossensoriais , Carbono/química , Resíduos de Drogas/análise , Técnicas Eletroquímicas/instrumentação , Compostos Ferrosos/química , Metalocenos/química , Leite/química , Nanofibras/química , Tetraciclina/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Eletrodos , Inocuidade dos Alimentos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...